Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nucleic Acids Res ; 51(6): 2529-2573, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: covidwho-20235160

RESUMO

Eighteen nucleic acid therapeutics have been approved for treatment of various diseases in the last 25 years. Their modes of action include antisense oligonucleotides (ASOs), splice-switching oligonucleotides (SSOs), RNA interference (RNAi) and an RNA aptamer against a protein. Among the diseases targeted by this new class of drugs are homozygous familial hypercholesterolemia, spinal muscular atrophy, Duchenne muscular dystrophy, hereditary transthyretin-mediated amyloidosis, familial chylomicronemia syndrome, acute hepatic porphyria, and primary hyperoxaluria. Chemical modification of DNA and RNA was central to making drugs out of oligonucleotides. Oligonucleotide therapeutics brought to market thus far contain just a handful of first- and second-generation modifications, among them 2'-fluoro-RNA, 2'-O-methyl RNA and the phosphorothioates that were introduced over 50 years ago. Two other privileged chemistries are 2'-O-(2-methoxyethyl)-RNA (MOE) and the phosphorodiamidate morpholinos (PMO). Given their importance in imparting oligonucleotides with high target affinity, metabolic stability and favorable pharmacokinetic and -dynamic properties, this article provides a review of these chemistries and their use in nucleic acid therapeutics. Breakthroughs in lipid formulation and GalNAc conjugation of modified oligonucleotides have paved the way to efficient delivery and robust, long-lasting silencing of genes. This review provides an account of the state-of-the-art of targeted oligo delivery to hepatocytes.


Assuntos
Oligonucleotídeos Antissenso , Humanos , Morfolinos/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , RNA/química , Interferência de RNA
2.
Viruses ; 15(3)2023 03 13.
Artigo em Inglês | MEDLINE | ID: covidwho-2320343

RESUMO

Nucleases are ubiquitous hydrolytic enzymes that cleave phosphodiester bond of DNA (DNases), RNA (RNases), or protein-RNA/DNA (phosphodiesterases), within the strand (endonucleases) or from the end (exonucleases) [...].


Assuntos
Desoxirribonucleases , Endonucleases , Desoxirribonucleases/química , Diester Fosfórico Hidrolases , DNA/química , RNA/química
3.
Biophys J ; 122(8): 1503-1516, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2286200

RESUMO

RNA pseudoknots are a kind of important tertiary motif, and the structures and stabilities of pseudoknots are generally critical to the biological functions of RNAs with the motifs. In this work, we have carefully refined our previously developed coarse-grained model with salt effect through involving a new coarse-grained force field and a replica-exchange Monte Carlo algorithm, and employed the model to predict structures and stabilities of complex RNA pseudoknots in ion solutions beyond minimal H-type pseudoknots. Compared with available experimental data, the newly refined model can successfully predict 3D structures from sequences for the complex RNA pseudoknots including SARS-CoV-2 programming-1 ribosomal frameshifting element and Zika virus xrRNA, and can reliably predict the thermal stabilities of RNA pseudoknots with various sequences and lengths over broad ranges of monovalent/divalent salts. In addition, for complex pseudoknots including SARS-CoV-2 frameshifting element, our analyses show that their thermally unfolding pathways are mainly dependent on the relative stabilities of unfolded intermediate states, in analogy to those of minimal H-type pseudoknots.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , RNA/química , Conformação de Ácido Nucleico , SARS-CoV-2/genética , Cloreto de Sódio , Zika virus/genética , Zika virus/metabolismo
4.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: covidwho-2006037

RESUMO

RNA is a unique biomolecule that is involved in a variety of fundamental biological functions, all of which depend solely on its structure and dynamics. Since the experimental determination of crystal RNA structures is laborious, computational 3D structure prediction methods are experiencing an ongoing and thriving development. Such methods can lead to many models; thus, it is necessary to build comparisons and extract common structural motifs for further medical or biological studies. Here, we introduce a computational pipeline dedicated to reference-free high-throughput comparative analysis of 3D RNA structures. We show its application in the RNA-Puzzles challenge, in which five participating groups attempted to predict the three-dimensional structures of 5'- and 3'-untranslated regions (UTRs) of the SARS-CoV-2 genome. We report the results of this puzzle and discuss the structural motifs obtained from the analysis. All simulated models and tools incorporated into the pipeline are open to scientific and academic use.


Assuntos
COVID-19 , RNA , Regiões 3' não Traduzidas , Humanos , Conformação de Ácido Nucleico , RNA/química , SARS-CoV-2
5.
Genes (Basel) ; 13(8)2022 07 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1969162

RESUMO

Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.


Assuntos
COVID-19 , RNA , Biologia , COVID-19/genética , Corantes Fluorescentes/química , Humanos , Hibridização in Situ Fluorescente , RNA/química , RNA/genética , RNA Mensageiro
6.
J Med Chem ; 65(15): 10161-10182, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1940455

RESUMO

In recent years, G-quadruplexes (G4s), types of noncanonical four-stranded nucleic acid structures, have been identified in many viruses that threaten human health, such as HIV and Epstein-Barr virus. In this context, G4 ligands were designed to target the G4 structures, among which some have shown promising antiviral effects. In this Perspective, we first summarize the diversified roles of RNA G4s in different viruses. Next, we introduce small-molecule ligands developed as G4 modulators and highlight their applications in antiviral studies. In addition to G4s, we comprehensively review the medical intervention of G4-interacting proteins from both the virus (N protein, viral-encoded helicases, severe acute respiratory syndrome-unique domain, and Epstein-Barr nuclear antigen 1) and the host (heterogeneous nuclear ribonucleoproteins, RNA helicases, zinc-finger cellular nucelic acid-binding protein, and nucleolin) by inhibitors as an alternative way to disturb the normal functions of G4s. Finally, we discuss the challenges and opportunities in G4-based antiviral therapy.


Assuntos
Infecções por Vírus Epstein-Barr , Quadruplex G , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpesvirus Humano 4 , Humanos , Ligantes , RNA/química
7.
J Mol Graph Model ; 116: 108264, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1914640

RESUMO

The structural variation of RNA is often very transient and can be easily missed in experiments. Molecular dynamics simulation studies along with network analysis can be an effective tool to identify prominent conformations of such dynamic biomolecular systems. Here we describe a method to effectively sample different RNA conformations at six different temperatures based on the changes in the interhelical orientations. This method gives the information about prominent states of the RNA as well as the probability of the existence of different conformations and their interconnections during the process of evolution. In the case of the SARS-CoV-2 genome, the change of prominent structures was found to be faster at 333 K as compared to higher temperatures due to the formation of the non-native base pairs. ΔΔG calculated between 288 K and 363 K are found to be 10.31 kcal/mol (88 nt) considering the contribution from the multiple states of the RNA which agrees well with the experimentally reported denaturation energy for E. coli α mRNA pseudoknot (∼16 kcal/mol, 112 nt) determined by calorimetry/UV hyperchromicity and human telomerase RNA telomerase (4.5-6.6 kcal/mol, 54 nt) determined by FRET analysis.


Assuntos
COVID-19 , Escherichia coli , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA/química , RNA/genética , SARS-CoV-2/genética , Termodinâmica
8.
Sci China Life Sci ; 65(7): 1285-1324, 2022 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1899275

RESUMO

RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.


Assuntos
COVID-19 , RNA , Animais , Conformação de Ácido Nucleico , RNA/química , RNA/genética , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA
9.
ACS Chem Biol ; 17(4): 840-853, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1852373

RESUMO

RNA detection is important in diverse diagnostic and analytical applications. RNAs can be rapidly detected using molecular beacons, which fluoresce upon hybridizing to a target RNA but require oligonucleotides with complex fluorescent dye and quencher conjugations. Here, we describe a simplified method for rapid fluorescence detection of a target RNA using simple unmodified DNA oligonucleotides. To detect RNA, we developed Lettuce, a fluorogenic DNA aptamer that binds and activates the fluorescence of DFHBI-1T, an otherwise nonfluorescent molecule that resembles the chromophore found in green fluorescent protein. Lettuce was selected from a randomized DNA library based on binding to DFHBI-agarose. We further show that Lettuce can be split into two separate oligonucleotide components, which are nonfluorescent on their own but become fluorescent when their proximity is induced by a target RNA. We designed several pairs of split Lettuce fragments that contain an additional 15-20 nucleotides that are complementary to adjacent regions of the SARS-CoV-2 RNA, resulting in Lettuce fluorescence only in the presence of the viral RNA. Overall, these studies describe a simplified RNA detection approach using fully unmodified DNA oligonucleotides that reconstitute the Lettuce aptamer templated by RNA.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Aptâmeros de Nucleotídeos/química , COVID-19/diagnóstico , DNA/química , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde , Humanos , RNA/química , RNA Viral/genética , SARS-CoV-2/genética
10.
Proc Natl Acad Sci U S A ; 119(17): e2112677119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1795600

RESUMO

Recent events have pushed RNA research into the spotlight. Continued discoveries of RNA with unexpected diverse functions in healthy and diseased cells, such as the role of RNA as both the source and countermeasure to a severe acute respiratory syndrome coronavirus 2 infection, are igniting a new passion for understanding this functionally and structurally versatile molecule. Although RNA structure is key to function, many foundational characteristics of RNA structure are misunderstood, and the default state of RNA is often thought of and depicted as a single floppy strand. The purpose of this perspective is to help adjust mental models, equipping the community to better use the fundamental aspects of RNA structural information in new mechanistic models, enhance experimental design to test these models, and refine data interpretation. We discuss six core observations focused on the inherent nature of RNA structure and how to incorporate these characteristics to better understand RNA structure. We also offer some ideas for future efforts to make validated RNA structural information available and readily used by all researchers.


Assuntos
COVID-19 , RNA , COVID-19/genética , Humanos , RNA/química , RNA/genética
11.
Nat Commun ; 13(1): 1722, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: covidwho-1773975

RESUMO

The rapidly growing popularity of RNA structure probing methods is leading to increasingly large amounts of available RNA structure information. This demands the development of efficient tools for the identification of RNAs sharing regions of structural similarity by direct comparison of their reactivity profiles, hence enabling the discovery of conserved structural features. We here introduce SHAPEwarp, a largely sequence-agnostic SHAPE-guided algorithm for the identification of structurally-similar regions in RNA molecules. Analysis of Dengue, Zika and coronavirus genomes recapitulates known regulatory RNA structures and identifies novel highly-conserved structural elements. This work represents a preliminary step towards the model-free search and identification of shared and conserved RNA structural features within transcriptomes.


Assuntos
Infecção por Zika virus , Zika virus , Algoritmos , Humanos , Conformação de Ácido Nucleico , RNA/química , RNA/genética , RNA Guia de Cinetoplastídeos , Análise de Sequência de RNA/métodos , Zika virus/genética
12.
Elife ; 112022 01 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1716085

RESUMO

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


Assuntos
Metilação de DNA/fisiologia , Metiltransferases/metabolismo , DNA de Cadeia Simples/metabolismo , Desoxiadenosinas/metabolismo , Humanos , RNA/química , RNA/metabolismo
13.
Biochem Biophys Res Commun ; 601: 129-136, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1699331

RESUMO

COVID-19, caused by SARS-CoV-2, has been spreading worldwide for more than two years and has led to immense challenges to human health. Despite the great efforts that have been made, our understanding of SARS-CoV-2 is still limited. The viral helicase, NSP13 is an important enzyme involved in SARS-CoV-2 replication and transcription. Here we highlight the important role of the stalk domain in the enzymatic activity of NSP13. Without the stalk domain, NSP13 loses its dsRNA unwinding ability due to the lack of ATPase activity. The stalk domain of NSP13 also provides a rigid connection between the ZBD and helicase domain. We found that the tight connection between the stalk and helicase is necessary for NSP13-mediated dsRNA unwinding. When a short flexible linker was inserted between the stalk and helicase domains, the helicase activity of NSP13 was impaired, although its ATPase activity remained intact. Further study demonstrated that linker insertion between the stalk and helicase domains attenuated the RNA binding ability and affected the thermal stability of NSP13. In summary, our results suggest the crucial role of the stalk domain in NSP13 enzymatic activity and provide mechanistic insight into dsRNA unwinding by SARS-CoV-2 NSP13.


Assuntos
COVID-19/prevenção & controle , Metiltransferases/metabolismo , RNA Helicases/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação/genética , COVID-19/virologia , Estabilidade Enzimática , Humanos , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Mutação , Conformação Proteica , RNA/química , RNA/genética , RNA/metabolismo , RNA Helicases/química , RNA Helicases/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Temperatura , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
14.
Int J Biol Macromol ; 203: 466-480, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1630871

RESUMO

The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to ß-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.


Assuntos
COVID-19/virologia , Ácidos Nucleicos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/fisiologia , Sítios de Ligação , DNA/química , DNA/metabolismo , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ácidos Nucleicos/química , Proteínas do Nucleocapsídeo/química , Ligação Proteica , RNA/química , RNA/metabolismo , Análise Espectral , Relação Estrutura-Atividade
15.
STAR Protoc ; 3(1): 101067, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1595326

RESUMO

N 6 -methylation of adenosine (m6A) is the most abundant internal mRNA modification and is an important post-transcriptional regulator of gene expression. Here, we describe a protocol for methylated RNA immunoprecipitation sequencing (MeRIP-Seq) to detect and quantify m6A modifications in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. The protocol is optimized for low viral RNA levels and is readily adaptable for other applications. For complete details on the use and execution of this protocol, please refer to Li et al. (2021).


Assuntos
Adenosina/análogos & derivados , Imunoprecipitação/métodos , Análise de Sequência de RNA/métodos , Adenosina/análise , Adenosina/genética , Animais , COVID-19/genética , Células CACO-2 , Chlorocebus aethiops , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Técnicas Genéticas , Células HEK293 , Humanos , Metilação , RNA/química , RNA/genética , Processamento Pós-Transcricional do RNA , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Células Vero
16.
Chem Commun (Camb) ; 57(83): 10911-10914, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1488037

RESUMO

We present Zn2+-dependent dimethyl-dipyridophenazine PNA conjugates as efficient RNA cleaving artificial enzymes. These PNAzymes display site-specific RNA cleavage with 10 minute half-lives and cleave clinically relevant RNA models.


Assuntos
Ácidos Nucleicos Peptídicos/química , Fenazinas/química , Piridinas/química , RNA/química , Catálise , Concentração de Íons de Hidrogênio , Hidrólise , Ribonucleases/química , Zinco/química
17.
Nat Commun ; 12(1): 5113, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1373413

RESUMO

SARS-CoV-2 is a major threat to global health. Here, we investigate the RNA structure and RNA-RNA interactions of wildtype (WT) and a mutant (Δ382) SARS-CoV-2 in cells using Illumina and Nanopore platforms. We identify twelve potentially functional structural elements within the SARS-CoV-2 genome, observe that subgenomic RNAs can form different structures, and that WT and Δ382 virus genomes fold differently. Proximity ligation sequencing identify hundreds of RNA-RNA interactions within the virus genome and between the virus and host RNAs. SARS-CoV-2 genome binds strongly to mitochondrial and small nucleolar RNAs and is extensively 2'-O-methylated. 2'-O-methylation sites are enriched in viral untranslated regions, associated with increased virus pair-wise interactions, and are decreased in host mRNAs upon virus infection, suggesting that the virus sequesters methylation machinery from host RNAs towards its genome. These studies deepen our understanding of the molecular and cellular basis of SARS-CoV-2 pathogenicity and provide a platform for targeted therapy.


Assuntos
COVID-19/virologia , Interações entre Hospedeiro e Microrganismos , RNA Viral/metabolismo , RNA/metabolismo , SARS-CoV-2/fisiologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/fisiopatologia , Metilação de DNA , Genoma Viral , Humanos , Conformação de Ácido Nucleico , RNA/química , RNA/genética , RNA Viral/química , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/genética
18.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1305735

RESUMO

The frontiers of our knowledge about RNA structure are rapidly moving [...].


Assuntos
RNA/química , Microscopia Crioeletrônica , Conformação de Ácido Nucleico , RNA/metabolismo
19.
Cell Chem Biol ; 28(5): 594-609, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: covidwho-1271598

RESUMO

Initial successes in developing small molecule ligands for non-coding RNAs have underscored their potential as therapeutic targets. More recently, these successes have been aided by advances in biophysical and structural techniques for identification and characterization of more complex RNA structures; these higher-level folds present protein-like binding pockets that offer opportunities to design small molecules that could achieve a degree of selectivity often hard to obtain at the primary and secondary structure level. More specifically, identification and small molecule targeting of RNA tertiary and quaternary structures have allowed researchers to probe several human diseases and have resulted in promising clinical candidates. In this review we highlight a selection of diverse and exciting successes and the experimental approaches that led to their discovery. These studies include examples of recent developments in RNA-centric assays and ligands that provide insight into the features responsible for the affinity and biological outcome of RNA-targeted chemical probes. This report highlights the potential and emerging opportunities to selectively target RNA tertiary and quaternary structures as a route to better understand and, ultimately, treat many diseases.


Assuntos
RNA/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Ligantes , Conformação de Ácido Nucleico , RNA/química , Bibliotecas de Moléculas Pequenas/química
20.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1282535

RESUMO

Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high social impact. Nucleobase-bearing peptides (nucleopeptides) and pseudopeptides (PNAs) offer further interesting possibilities related to their nucleobase-decorated nature for diagnostic and therapeutic applications, thanks to their reported ability to target complementary DNA and RNA strands. In addition, these chimeric compounds are endowed with intriguing self-assembling properties, which are at the heart of their investigation as self-replicating materials in prebiotic chemistry, as well as their application as constituents of innovative drug delivery systems and, more generally, as novel nanomaterials to be employed in biomedicine. Herein we describe the properties of nucleopeptides, PNAs and related supramolecular systems, and summarize some of the most relevant applications of these systems.


Assuntos
Nanoestruturas/química , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , DNA/química , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA